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Effects of excitability and coupling strength on plane and spiral waves in two-dimensional excitable lattices
modeled by phase-coupled elements are investigated. The corresponding phase diagrams for stable plane
waves and spiral waves are obtained by simulations. The parameters capable of supporting stable spiral waves
are sorted out together with the spiral rotation frequencies. This discrete model corresponds to an excitable
medium with zero refractoriness and in the continuum limit supports zero-core spiral waves. The associated
wave propagating behaviors are also discussed analytically and verified.
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I. INTRODUCTION

Spiral waves in excitable media are robust self-organized
patterns ubiquitous in diverse physicochemical and biologi-
cal systems as in the Beluzov-Zhabotinsky reaction �1�,
chicken retina �2�, social organization of dictyostelium dis-
coideum �3�, or in cardiac tissues �4�. Traditionally, the dy-
namics of the elements in these excitable media capable of
supporting spiral waves are modeled by the coupling of a
fast �excitatory� and a slow �inhibitory� variables. To distrib-
ute the excitatory activity across media, usually diffusive
coupling is assumed between these excitable elements. This
modeling of excitable media by the interaction of a fast and
a slow variable has been very successful. Many observed
phenomena associated with spiral waves such as spiral tip
meandering �5,6�, dependence of wave velocity on wave
front curvature, and etc. are correctly reproduced. The fa-
mous Oregonator �7�, FitzHugh-Nagumo �8�, and Luo-Rudy
�9� models are entirely based on this scheme. It raises the
question whether this slow and fast variable model is the
only candidate for the generation of stable spiral waves. It
had been shown by Paullet and Ermentrout �10� that stable
spiral wave solutions exist for an excitable system which is
properly phase coupled. This last finding hints that there are
alternatives of generating spiral waves.

Phase models of interacting excitable elements were first
attempted by Kuramoto et al. �11,12� to describe the ordered
phases of ensembles of collection of nonuniform elements.
The oscillating limit of this lattice model is well known as
the Kuramoto model �13–15�. Recently, collective excita-
tions resulting from ensembles of excitable Kuramoto cells
have been considered using globally coupled elements
�16,17�. However, properties of spiral waves in phase-
coupled model are much less studied and little is known
about the stability regime and wave kinematics nor its rela-
tion to the continuous reaction-diffusion system is examined.
In a fast-slow variables model, the dynamics of the slow
variable is needed to reset the fast variable from its excited

state to its rest state during the refractory period of the sys-
tem. However, in a phase model, the phase variable will
automatically reset to zero once it attains the value of 2�
because the coupling in the system cannot distinguish the
difference between zero and 2�. Therefore, there will be
zero refractoriness in a phase-coupled system. Recently, the
case of strongly reduced refractoriness in the fast-slow model
has also been studied by Zykov �18�. An interesting conse-
quence of zero refractoriness in Zykov’s model is that there
will be a zero-core spiral in certain limits. From a physical
point of view, a zero-refractoriness spiral wave would be
more stable since there will be no interaction between the
spiral front and the back of the previous spiral wave, thus
would not induce instability for meandering.

Furthermore, there are experimental observations of spon-
taneous wave activities in cultured excitable cardiac ventricle
cells �19,20�, i.e., the originally excitable �long refractory
period� cells become self-oscillatory due to coupling and
thus could presumably be modeled by phase-coupled mod-
els. In this Rapid Communication, we report the result of our
study on dynamics of plane and spiral waves in the Kura-
moto excitable model on a lattice of excitable elements phase
coupled to its nearest neighbors. The zero-core spiral waves
can in fact be reproduced. The properties and stability of
plane and spiral waves are investigated systematically, with
further exploration on the connections with the continuous
reaction-diffusion system.

II. PHASE-COUPLED EXCITABLE MODEL: DISCRETE
MODEL AND CONTINUUM LIMIT

We model a large set of coupled excitable elements on a
square lattice. Each cell in the lattice is described by the
phase �i that is locally coupled in phase difference to its
nearest neighbors described by the Kuramoto-type model,

d�i

dt
= �i − b sin �i + k�

�i,j�
sin�� j − �i� . �1�

The intrinsic dynamics of an isolated element is described by
the first two terms: the frequency �i�0 of each cell can in
general be nonuniform and the element can be oscillatory or
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excitable depending on the parameter b�0. �i , j� denotes
summation over nearest neighbors. k is the coupling strength
between two neighboring cells.

Kuramoto’s seminal work �13� showed that weakly
coupled oscillators can be described by the simple phase-
coupled equations �given by Eq. �1� with b=0� in which the
dynamics of the limit cycles can all be described by the
phase variables �s. Excitable medium can be described in
Eq. �1� with b��i. In this regime, the fixed points are rela-
tively close to each other and if the excitation is larger than
some threshold, the trajectory triggers into a long excursion
eventually ending up at another stable fixed point. Thus the
system behaves as an excitable system and if external pertur-
bations are sufficiently large, oscillatory dynamics will result
and may propagate to other elements due to coupling. If
these oscillatory dynamics can be sustained indefinitely �as
in the case of spiral waves�, these excitable elements will
often undergo oscillations and presumably can be described
by a phase-coupled model like that of Eq. �1�. Thus we ex-
pect coupled excitable elements described by Eq. �1� would
be valid for a system whose excitability is near its threshold,
which is the regime we will focus here. In coupled systems
�k�0�, signal propagates through the lattice with a speed
that increases with the intercell coupling.

The continuum limit of Eq. �1� can be written as a simple
reaction-diffusion equation of a single phase variable in
space and time. We take all elements having the same � and
for notation simplicity, b and k are all expressed in units of �
�t in unit of 1 /�� hereafter. The continuum limit is obtained
by taking the lattice spacing, �x, to be small and one can
easily obtain the corresponding reaction-diffusion equation
for ��x ,y , t�,

�t� = 1 − b sin � + D�2� , �2�

where the diffusion constant is given by D=k��x�2. Thus the
discrete model �Eq. �1�� reduces to the continuous reaction-
diffusion equation for small �x or equivalently in the large k
limit. Since for excitable systems, b�1, the reaction term in
Eq. �2� will have two zeros in 0	�
2�. Denoting the first
and second zeros by �o and �o+2�, �o is given by
b sin �o=1, and � can be solve explicitly for b�1 to give
��	b2−1. For convenience, the phase variable is shifted by
defining �
�−�o, then the reaction-diffusion equation be-
comes

�t� = F��� + D�2�, F��� = 1 − b sin�� + �o� . �3�

The reaction function F��� �shown in Fig. 1� is similar to the
cubic nonlinearity function that has been studied in detail in
many two-variable reaction diffusion systems such as the
FitzHugh-Nagumo model. Contrary to the usual two-variable
reaction-diffusion equations which consist of a fast and a
slow variables, Eq. �1� corresponds to a reaction-diffusion
system with zero refractoriness. This can be seen intuitively
from the reaction function F��� in Fig. 1, once the stable
fixed point at the origin is perturbed beyond the unstable
point at 2�, the system almost immediately rushes to the
stable point 2�, which is periodically identical to the origin.
There is no slow excursion and hence no refractory period in
this system. Furthermore, since stable spiral waves occur

only in the highly excitable regime in our model and thus the
spiral wave produced would approach to a zero-core rigid
rotating spiral wave in the large coupling limit.

III. PLANE-WAVE PROPAGATION

The discrete dynamics in Eq. �1� is solved numerically
�21�. We study the effect of b and k on the propagation speed
for a stable pulse or kink to travel across a section of the
lattice. The plane-wave speed v is faster if b is closer to the
threshold of excitation. If b�1, the distance between the
stable and unstable fixed points is short. Hence, the cells on
the lattice are highly excitable and thus are able to respond
quickly to the front of the excitatory plane wave, allowing a
fast signal propagation across the lattice. As shown in the
lower inset of Fig. 2, plane wave propagates faster if the
value of b is closer to the threshold of excitability. For each
value k, it is found that the plane-wave pulse can propagate
across the lattice without disruption only if the value of b is
sufficiently small. In general the wave speed is larger for
stronger coupling, while the wave propagation speed de-
creases with increasing b. The stability of plane-wave propa-
gation is summarized in the phase diagram in Fig. 1�b�, only
for systems with strong enough coupling and excitability can
support stable plane-wave propagation. The phase boundary
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FIG. 1. �Color online� �a� The reaction function F��� in the
continuum limit given by Eq. �3�. The stable and unstable fixed
points are marked by filled and open circles. �b� Phase diagram for
stable plane-wave propagation. The curve is fit of the form
b=	1+k2, where  is a fitting constant.
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FIG. 2. �Color online� Plane-wave propagation speed as a
function of k for b=1.02. The dotted curve is from the theoretical
result in Eq. �4�. Upper inset: the wave profile of the plane wave for
k=6, dotted curve is the theoretical result from Eq. �4�. Lower inset:
v vs b for different values of k.
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can be shown �24� to be of the form b=	1+k2 �where  is
a constant� from nonlinear dynamic analysis.

In the stable regime, an initial arbitrary shape pulse or
front of sufficient amplitude will travel and eventually attain
a unique stable front with shape and speed determined by b
and k. It is worth noting that a similar behavior has been
reported in cellular automata model in which plane wave can
propagate in excitable medium if the coupling range is suf-
ficiently large �22�. Such a behavior has also been reported in
discrete excitable systems �23�. A detail analysis of the cor-
responding continuum reaction-diffusion model in Eq. �2�
also reveals the existence of a minimal k for stable phase
kink to propagate �24�. Figure 2 shows the effect of k on the
plane-wave speed for a given value of b the propagation
velocity increases with k.

For analytic results, we look for traveling wave-front so-
lution of speed v in Eq. �3� of the form ��x , t�=U�x−vt�,
and the wave-front profile satisfies DU�+vU�+F�U�=0,
with U�−��=2� and U���=0. One can approximate
F��� by a cubic function with the same maximum and roots
as in Fig. 1�a� by F��������−2���2�−�� with
�
 27

16�1+b� / ��3+�3− 3
2����+��+ ��2+�2−���3/2� and

obtain analytically the traveling plane-wave solution. After
some algebra, one obtains the plane-wave speed and steady
wave-front profile as

v = 	2�D�� − 2��, U�z� =
2�

1 + exp��	2�

D
�z − zo�� ,

�4�

where zo is a constant. The theoretical plane-wave speed is
compared with the simulation results of the discrete model in
Fig. 2 with no adjustable parameter showing reasonable
agreement. The shape of the wave-front profile from the
simulation of the discrete model is also compared with the
predictions and shown in the upper inset.

IV. SPIRAL WAVES

To induce spiral waves, a propagating plane wave is pre-
pared and then a wave break is set to occur by enforcing half
of the cells on a line �perpendicular to propagation direction�
to be nonresponsive momentarily. The free shoulder of the
broken wave curls and gives rise to a rotating spiral. Figure 3
shows the phase diagram on the stability of spiral waves
from Eq. �1� along with the resultant patterns. Systems with
large values of k and b�1 can support stable spiral waves
that persist indefinitely. Stability of spiral waves is further
checked by placing an initial regular spiral in lattices with
different b and k and observe their evolution dynamics.
Snapshots 2 and 4 shows the long time patterns when an
initial spiral is placed on the lattice with corresponding val-
ues of b and k in the phase diagram. Snapshots 1 and 3 show,
respectively, the transient breaking up fragments and the
transient unwrapping of the initial spirals, and the system
will eventually become quiescent. Regions that do not sup-
port stable rotating spiral waves can be described by two
regions as labeled by “no sw I” and “no sw II” from their

different properties. In no sw I, spiral wave is unstable be-
cause of the low coupling and there is no stable plane wave
in most part of this region. For low excitability �upper part of
no sw I�, the initial spiral quickly fades away and the me-
dium remains silent; for high excitability �lower part and
snapshot 1�, the initial SW breaks apart into small pieces of
rotating fragments which persist for some time and the me-
dium eventually becomes silent. Stable plane wave can
propagate in no sw II, but the coupling is still not strong
enough to support a stable spiral wave, an initial spiral will
quickly unwrap with long segments exiting from the bound-
ary �snapshot 3�. The square-shaped rotating spiral at low
coupling �snapshot 2� can be understood to be originated
from the discreteness of the model: if the continuum equa-
tion in Eq. �2� is discretized with spacing �x, then a small
coupling k corresponds to too coarse a �x �since D=k��x�2�
which is known to give distorted spirals and hence irregular
tip meandering. As k increases near the boundary from re-
gion 2 to 3, an initial rotating �round� sw evolves into a
squared shaped wave which rotates very slowly. As k in-
creases into region 3, the square spiral stops rotating at all
and unfolds into a plane wave, and in region 4 waves propa-
gate as nice rounded spiral waves. The phase boundary for
stable plane wave is also shown in the spiral-wave phase
diagram. It is clear that region of stable spiral-wave guaran-
tees the stability of plane-wave propagation, but the converse
is not true. If k is large enough, the lattice supports rigidly
rotating stable spiral waves with the tip tracing out a circle of
size of the lattice spacing, i.e., a zero-core spiral wave.

The spiral rotating frequency f as a function of k is shown
in the inset of Fig. 4. As is expected, for coupling strength
above the stability threshold, the frequency of rotation in-
creases with k and decreases with b. It should be noted that
the effect of b on f is several times stronger than due to k. In
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FIG. 3. �Color online� Spiral wave stability phase diagram b vs
k on a 300�300 lattice using Eq. �1�. Bottom figures shows typical
wave patterns and tip trajectories corresponding to the labels indi-
cated on the phase diagram. Note that snapshots 1 and 3 show,
respectively, the transient broken fragments and transient unwrap-
ping of initial spirals, while snapshots 2 and 4 show the long time
patterns. The dashed curve shows the phase boundary for stable
plane-wave propagation �Fig. 1�b��.
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the present case of zero-refractoriness medium, the wave
propagation is solely governed by the kinematics of the me-
dium and the spiral rotation angular frequency is related to
the plane-wave propagating speed. In the continuum �or
large k� limit, the medium will support a zero-core rigidly
rotating spiral wave as shown in the lower inset of Fig. 4. In
the highly excitable limit �as in this Rapid Communication�,
spiral rotation frequency is given by �18� 2�f =0.331v2 /D.
With the theoretical result in Eq. �4�, f is independent of D
�or k�, the data in the inset of Fig. 4 indeed show that f starts
to saturate for large values of k. Furthermore, using
D=k��x�2 in our discrete model, the relation between the
spiral-wave rotating frequency and plane-wave speed,

2�f =0.331v2 /D, can be checked directly. Figure 4 is a plot
of v2 / f versus k showing the data fall on a straight line for
large k with an inverse slope of 0.335�0.008 which is in
excellent agreement with the universal value �18�.

From the discussions above, it is clear that our phase-
coupled model, in the continuum limit, corresponds to the
zero-refractory reaction diffusion system. The associated spi-
ral wave rigidly rotates with a zero core. Contrary to the
usual excitable systems with fast and slow variables in which
the spiral wave can be depinned and meanders resulting from
a Hopf bifurcation �25,26�, the single variable phase dynam-
ics in the present model forbids such a mechanism. In ex-
periments, zero-core rigid rotating spiral looks as if the spiral
is pinned. Usually, it is assumed that inhomogeneity of the
system gives rise to the pinning such as in cardiac cultures
�27,28�. Our results suggest that the some apparent pinning
of spirals may be naturally arisen from the phase-coupled
nature of the excitable medium. In fact, a phase-coupled
Kuramoto model �20� has been recently used to understand
the phase synchronization in a growing cardiac culture suc-
cessfully; suggesting that phase coupling is plausible among
cardiac cells. Of course, system inhomogeneity would also
help pinning spirals in our model.
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FIG. 4. �Color online� Ratio of the plane-wave propagation
speed squared to spiral rotation frequency plotted as a function of
coupling strength k. Spiral rotation frequency is measured on a
500�500 lattice with b=1.02. The straight line is a fit of the data
for larger values of k. Upper inset: rotation frequency of spiral
waves vs k for different values of b. Lower inset: snapshots of the
rotating spiral wave showing the zero-core behavior for k=66.67
and b=1.007.
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